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LETTER TO THE EDITOR 
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Abstract A method to reveal and estimate the fractal scaling properties of positive and negative 
increments in one-valued functions that describe natural pmcesses is p m p ~ e d .  Structural 
functions, which were intmduced by Kolmagorov in 1941 for analysing the scaling pmpenies 
of small-scale turbulence, provide the basis of the method. Examples are given to illnsmte the 
application of the proposed method for analysing the tnce of one of the coordinates of Brownian 
motion, simulated asymmetric wave f o m .  internal waves, sand waves in one-directional streams 
and river turbulence. 

Various methods are now applied for analysing the fractal scaling properties of one-valued 
functions which describe natural processes. Among the most well known are Hurst's 
method, Richardson's method, the box-counting method as well as that of spectral densities 
[l-31. However, these methods are characterized by certain drawbacks and restrictions thus 
stimulating the elaboration of new approaches 14-61, All the above mentioned methods 
are aimed at revealing self-similarity or self affinity properties and at determining their 
quantitative characteristics, namely, fractal dimensions and Hurst's exponent, without paying 
attention to the possible asymmetry of processes relative to their peak values. Thus, for 
instance, the formation of the relief of northem and southem slopes on the earth's surface 
may have different peculiarities under certain circumstances. On a profile of the earth's 
surface this would be expressed in the asymmetry of the shape of its rough projections. 
Various wavy phenomena, having asymmetrical shape as a result of nonlinear or other 
effects, may serve as another example. The above-mentioned methods for analysis of such 
phenomena do not give information about their possible asymmetry. 

In our opinion, the foIlowing approach also allows, along with traditional scaling 
exponents, determination of the properties of positive and negative increments in functions 
that describe natural processes. 

We shall take the method of structural functions introduced by Kolomogorov in 1941 for 
analysing the structure of small-scale turbulence [7] to serve as the basis of our approach. 
For onevalued function y ( x )  the structural function is determined by the relationship 
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where the line on top points to the averaging operation in respect of the realizations ensemble 
of y(x) or, when adopting the ergodicity hypothesis, in respect to realization length. When 
scaling exists in the structure of function y(x) ,  relationship (1) acquires the power form 

- 
Ay2(Ax) - AxzH (2) 

where H is Hurst’s exponent [1,2]. It is connected with the power spectrum S,(f) - f - p  
of function y(x) by the relationship p =  2H f 1 [I-31. The structural function @(Ax) is 
quite an effective instnunent for revealing and estimating fractal scaling properties and has 
enjoyed rather wide use lately in solving various physical problems [3,8,9]. Indeed, it has 
an obvious advantage over Hurst’s, Richardson’s and box-counting methods since it does 
not require preliminary information concerning the structure of the investigated function 
y(x) or of any of its preliminary Immformations (e.g. compression of the y(x) graph in 
Richardson’s and box-counting methods for determining H [Z, 31). 

The essence of our innovation is in the separate consideration of positive Ay+ and 
negative Ay- increments in function y(x). In other words, in addition to (1) we suggest 
the following functions: 

- 
Ay:(Ax) = [Y(X +Ax) - y(x)l* Ay(AX) > 0 (3) 

which characterize the structure of positive (3) and negative (4) increments in the function 
y(x). It is obvious that, generally, functions Ay; and Ay? a n  be presented as follows: 

- - 

2 
i~~ ~~~ 

- 
AY?(AX) = AY-(AX) + S ( h x )  (6) 

- - 
where Ay+ and Ay- are the  average^ positive - and negative -. increments characterizing 
the positive and negative slopes of y(x), Ay: and Ay? are their variances. Thus 
relationships (3)-(6) introduce new characteristics for consideration which reflect properties 
of the investigated processes that are inaccessible with conventional methods. Obviously, 
for processes displaying symmetrical peaks, the characteristics of - positive and negative 
increments will coincide. For this case the relationship Ay:(Ax) = Ay?(Ax) =@(Ax) 
will occur. This is illustrated by figure 1 which shows the characteristics we have introduced, 
for a @ace of Brownian motion. HoweUer, if we have non-synunem in wave shape or in 
function y(x) projections which are different at various scales, we shall obtain different 

behaviour of the proposed new characteristics (Ay:. Ay?, Ay+, Ay-, Ay:. Ay?). It is 
not excluded that their scaling exponents will be different. In this connection it should 
be noted that our approach is related, to a certain degree, with multifractal methodology 
[Z]: we consider the subsets for negative (SAx-) and positive (SAX-) increments which 
give in their sum the set of all increments, SAX = SAx+USAx-. In some cases we 
may expect some differences between prefactors and exponents in scaling relationships for 
the new structural functions (5) and (6). The new characteristics are presented in figure 2 

- 

-- 2 2 _ -  -- 
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Figure 2. Graphs of functions AY. Ay:, A 2  (a) and Ay+, Ay- (b)  for s u m e d ,  
exponentially distributed, mndom values, variance 1,  ranging from - I  to infinity (computer 
simulation). 

for a function with asymmetric peak, being generated by the summation of exponentially 
distributed random numbers with variance 1, ranging from -1 to infinity. 

In connection with the discussion of our approach it should be mentioned that the 
third-order structural function @(Ax) is sometimes applied to evaluate the asymmetry of 
waves or projections of function y ( x )  [7,81. However, we regard our approach as being 
more convenient: it simultaneously allows estimation of both the usual scaling exponents 
and the degree of asymmetry. Besides, it has better physical clarity and is easier for physical 
interpretation. 

Hereafter we shall apply the described approach for analysing the s " x e  of intemai 
waves (A), sand waves in a one-direction stream (B) and river turbulence (C). We shall 
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not subject the revealed effects to a detailed analysis but present the results to show the 
possibilities of the proposed method. The data used for calculations were obtained during 
laboratory and field experiments. 

(A). To serve as initial data, we use measurements of water temperature averaged by 
depth, T ( f ) ,  which were carried out in the Black Sea, 2 km off shore. Joint analysis of 
vertical profiles of temperature and salinity shows the function T( t )  is linearly connected 
with the fluctuations of the depth of the internal boundary dividing warm and cold water. 
To a certain extent this provides us with the possibility of obtaining information about the 
structure of internal waves on the basis of time fluctuation of depth averaged temperature. 
The utilization of the described approach applied to T ( f )  is given in figure 3. Joint analysis 
of the graphs in figure 3 allows us to draw the following conclusions. The investigated 
range of time scales of T ( f )  can be divided into three sub-ranges (figure 3). 

I ..... 
; OOOOOAT-~ 
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Figure 3. Graphs of functions ATz, AT:, AT? (a) and AT+. AT- (b) for temperalw 
Rucfuations T(t) ( m e a s m e n i s  in the Black Sea). 

- -  2 2 - -  - -  
For the first subrange AT! > AT:, AT- > AT+ and AT? AT? are characteristic. 

The forward face of small-scale waves is, on average, steeper than the back face (AT- > 

AT+). The fluctuations in slope of theinternal wave surface in this sub-range is slightly 
smaller for the front face of waves than for the back one (AT? < AT:). 

In going from the first sub-range to the second one, the situation changes and we 

have AT? > AT:, AT- % AT+ and AT? > AT,", i.e., on average the wave shape 
is symmetrical but the fluctuations in slope of the intemal wave surface is bigger for the 
forward face of the waves. 

AT+ holds, however, the Elation 
between AT? and AT: and between AT? and AT: reverses: AT? < AT" and - -  -+- 
AT? < AT:. It should be added that scaling exponents H for functions ATZ, AT:, 
--- 2 2 - -  
AT?, AT+, A T . ,  AT?, AT? are close to each other. For rhe first sub-range they are 

2 - 
2 - - -  

2 2 - - _- - .  - -  

2 2 - -  
For the third sub-range the relationship AT- - - . - -  - - - 
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approximately equal to O S ,  for the second and third ones they are close to 0.75 (figure 3). 
Thus in both cases the geometry of intemal waves is characterized by self-&ne structbre 
(H c 1). The given analysis points to the possible existence of three mechanisms for 
generation and development of the investigated intemal waves, each associated with a 
particular time interval: (1) At < 200 sec, (2) 200 sec < A t  < 1300 sec and (3) 
At > 1300 sec. These properties have been revealed on the basis of the proposed approach 
and would have been inaccessible with traditional fractal scaling analysis methods. 

(B). Here we shall analyse the scale properties of bed elevation Z ( x )  and Z ( t ) ,  
representing longitudinal and time profiles of sand waves in one direction along an alluvial 
stream.. The experiments were conducted in flumes at the State Hydrological Institute (St. 
Petersburg) and at the Odessa Hydrometeorological Institute [lo]. 

The characteristic graphs of functions'(1). (3H6) for longitudinal profiles of sandy 
sixem bed Z(x) are shown in figure 4. For small scales the inequalities A Z ;  > AZ?, 

AZ+ z AZ- and AZf t AZ? are evident, thus providing evidence, of the asymmetrical 
shapes of sand waves: the back face of sand bed waves is more gentle than the forward one. 
Further, notice is drawn to the difference in scaling exponents for positive (If+ FS 1.0) and 
negative (If- x 0.8) incrementk (figure 4). It is well known that the forward face of sand 
waves, characterized in our approach by positive increments, has a.constant slope (close 
to the angle of intemal friction of sand in water [lo]) which stipulates its independence 
of sand wave scale. From this follows the self-similarity for positive increments of Z(x) .  

This is expressed by the relationships AZ: - A Z ,  - AxzH+ with H+ = 1. At the same 
time, one can observe the self-affinity of negative increments with H- x 0.8 i 1.0 which 
testifies to the decrease of the inclination angle of sand waves back face when the scale of 
waves increases. 

- -  
2 - -. 2 - -  

2 - -  

AX o m  bX. cm 

2 2  -- _-- 
Figure 4. Characteristic gmphs of functions AZ2, AZ:. A Z t  (a) and AZ+, AZ- (b)  for 
longihldinal profiles Z(x) of bottom sand waves (laboratoly experiments). 

Analysis of functions (1) and (3H6) for time changes of bottom elevation Z(r) in the 
case of sand waves passing a point (figure 5) also gives evidence of asymmetric fluctuations 
of the bottom elevation. The waves forward face, characterized by negative increments in. ' 
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function Z(t), is steeper compared to the back face (AZ: z AZL, AZ+ > AZ-). Besides, 
in the case of small At one can also observe distinct scaling behaviour of functions AZ$, 

and AZ?, AZ- with various scaling exponents: H+ % 1.0 and H- % 0.65 (figure 5). 

- 
2 2 -- 

1 10 

At. min 

_-- 2 - 2 .  
Figure 5. Characteristic graphs of functions AZ2. AZ?. AZ! (a) and A&,, AZ- (b) for time 
profiles Z(r) of bottom sand waves Oabomtoly experiments). 

The coincidence of scaling exponents for positive increments in functions Z(x) and Z ( t )  
show the movement of forward faces of sand waves practically - without distotions (or that 
the velocities of their movement are independent of scale: AZ+ - Ax - At). However, the 
difference in scaling exponents for negative increments in functions Z(x) and Z(t) provides 
grounds for a preliminary conclusion concerning the existence of a peculiar dispersion for 
sand waves back faces, i.e., the dependence of the velocity of their movement U- upon 
scale: AZ- - - [ A ~ / V - ( A X ) ] ~ . ~  - This is indicative of the decrease 
of longitudinal movement velocity U- of sand waves hack faces with the increase of their 
scale: U- - Thus the utilization of the proposed method has revealed several 
important peculiarities of sand wave dynamics which are inaccessible to other methods [lo]. 

(C). To analyse the structure of velocity fluctuation in rivers, within the framework 
of the proposed approach, we have used the measurements of longitudinal velocities on 
the Chiugur River (Moldova). The applied equipment and methods are described in 
[lo]. The characteristic graphs of functions (l), (3H6) for the longitudinal component 
of velocity vector are given in figure 6. In the range of small time scales of all graphs, 
the scaling behaviour of structural functions occurs with H = 0.324.34, which according 
to equation (2) agrees with Kolmogorov’s well known law ‘U3’ [7]. In all cases the 
positive increments are stronger than the negative ones, which indicates a faster increase 
of longitudinal velocities in comparison with their subsidence. In other words, the short 
intervals of velocity increase alternately with longer ones of gradual velocity decrease. This 
result is also in good agreement with the conclusions of the local-isotropic turbulence theory 
[7]. To this it should be added that the size of fluctuations in positive acceleration exceeds 
the size of fluctuations in deceleration (AUf z AU!?). This result needs further checking 
and analysis. 

- 

- -  
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Figure 6. Characteristic graphs of functions AUz, Aut, AU! (U) and AU+, AU- (b) for 
longitudinal velocities U(:) (measurements in the Chiugur River, Moldova). 

In this short communication we have presented the idea of a new method for revealing 
and analysing scaling properties, which, to a certain degree, adds to the information about 
natural objects that is obtained on the basis of usual structural functions. By illustrating this 
idea with different examples we have not set ourselves the task o f  their detailed physical 
analysis. We have only demonstrated the possibility of the new approach in obtaining 
additional information which was inaccessible with traditional approaches such as Hurst's, 
Richardson's and box-counting methods. 

The authors are grateful to N Kushnir, P Ganea, A Sukhodolov, A Filonov and J White 
for their assistance in preparing this work. The research was partly funded under contract 
CO1320 from the Foundation for Research, Science and Technology (New Zealand). 
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